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INTRODUCTION

An exact involute surface (EIS) is defined by the relation [1]

r sin a = c (1)

where r is the radial coordinate, a is the arc angle, and c is called

the involute constant. Angular coordinate 0 is given by

0 - = (z - z + a + cot ao  a - cot a (2)0 ~ 0 0°  0 z-z ) +s

where the point defined by r =r 0 (a = a), 0 = o, z = z0 is

simply a base point on the EIS and A is a constant related to the

number of plies N, ply thickness t, and constant c by

A N2t2 1 (3)

The positive directions of the various geometric variables are

shown in Figure I where it should be noted that the (6,r,z) axes

form a right-handed triad.

Other important geometric parameters of the EIS are the tilt

angle y, surface angle , and helical angle 0, which are shown

in their positive directions in Figure 2. These are defined by

dr A(4
tan y = d = o(4)

cos ' = - sin a sin y (5)

and

0= + o + (z-z 0) + cot a - cotal (6)(A+ )  C zz )  o

where * represents the angle from the local meridional direction to
a line in the EIS that was originally straight (in the ply pattern),

such as the warp direction, and 00 is the corresponding angle at

the base point.

*Figures are located at end of report.



The developed configuration ( or ply pattern) of the EIS

is defined by the parametric relations

tan X = c (A_2+ (7)
Ar 2_c2

A2z
Az - X cot X (8)

c(A2 +I)1/2

R =2 [(A 2+) (A2 r 2+c2) (9)

where the ply pattern coordinates R, 0 are shown in Figure 3.

The foregoing equations, (1) - (9), completely define the

configuration of the EIS and its ply pattern, and require only

the prescription of constants c, N, t (or equivalent information),

initial values 60, o , and the r, z profile of the body of revolution

being generated by the involute method. The body of revolution

itself need only possess piecewise-continuous boundaries. Equations

(1) - (9) guarantee that the volume of the body will be completely

and perfectly filled by layers of ideally flexible material having

constant thickness (aside from highly-localized boundary regions

where the thickness varies to avoid "steps"). However, exact

involute construction is not widely used in the manufacture of

practical components, such as rocket nozzle exit cones. Rather,

various ply pattern models based upon analytical and empirical

methods are employed, including interleaving, which consists of

the use of plies of (usually) two different shapes and thicknesses

in the same body. Thus, it is important to mathematically describe

the geometry and to define relations that measure the degree of

error induced via these approximate methods, which is the purpose

of the present communication.
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A comment on the organization of this report is in order at

this time. In the next section, we shall present the equations that

define the involute surface, i.e., the three-dimensional surface

formed by a ply within the body of revolution, and the associated

ply pattern according to contemporary procedure [2, 3, 41. This

procedure consists of the analysis of involute surface "strips" of

finite dimension and involves iterative solutions of the basic

equations. Some new results for the description of the helical

angle distribution and ply pattern analysis in the presence of

interleaving are also given there. New work that leads to precise

(closed form) solutions of the basic equations is presented in a

subsequent section. This is done in the interest of clarity, and

also to establish a complete formulation by the finite strip

method since the ply pattern analysis does not lead to a

convenient closed representation.
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THE START-LINE METHOD

a) INVOLUTE SURFACE STRIP

The model employed herein assumes that the involute surface

consists of strips, each of which obeys eqs. (1) - (9) with

piecewise constant c, such that consecutive strips are continuous

at a single point. The consecutive strips possess a common

terminal plane z = constant. This model leads to perfect filling

of volume if the strip dimension is infinitesimal but results in

discontinuities in the form of "plateaus" in the involute surface.

Furthermore, we introduce the concept of a start-line, as described

by Savage [3] and Stanton [4] to control the local orientation

of the involute surface. The start-line is simply a meridian

(0 = constant) of the involute surface and is only required to

be piecewise-continuous. It seems that most, if not all, of

the ply pattern design approaches used in practice can be derived

by appropriate tailoring of the start-line [4]. Furthermore, we

shall use the term hypothetical involute surface to refer to the

involute surface conceived in the start-line method, which cannot

be formed from sheets of continuous material because of the

discontinuities required. It will be necessary to refer to four

specific values of radius; namely, inner and outer radii rI and

ro, respectively, start-line radius rS, and for the case where

interleaving is present, rc is the intersection of two regions

having different values of N and t. Each of the four radii are

functions that depend on axial coordinate z. Since the constants

N and t usually appear in the form of their product, we let

M = Nt (10)
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We shall consider a strip of the involute surface as the region

formed by z 1 z 5 z . Parameters will carry a subscript q

(q = 1,2) that corresponds to thickness parameter M if inter-

leaving is present. Our convention is that q = 1 corresponds to

the region r > rC if rs > rC and r . rC otherwise. We cannot

permit the quantity rS - rC to change sign in a given problem,

although it may vanish. Also, a subscript G(G = I,O,S,C) will be

used to refer to any of the four special values of r discussed

above. If the value of r is arbitrary, no G subscript will be

displayed. It will also be understood that, unless otherwise

noted, the following equations are only valid within a single

strip, hence no index for strip identification will be employed

unless needed for clarity. Finally, we introduce the representation

FGq (z.'z) = aGq (zj) + cot aGq (z.) - (Gq (z - cot 1Gq (z1k )  (1)

and we assume that rs(Z 2 ) - rs(z I) is not negative.

We now let the strip geometry be defined by the governing

involute equation

r sin a = c (12)
q q

where c is piecewise-constant. While r, 0, and z are alli q

continuous at r = rC , arc angle a is discontinuous there. We also

let

A = 2 -C ) (13)
M

The constants Cq cannot be arbitrarily prescribed when using the

start-line approach. Rather, c1 is computed such that it satisfies
1 AI

FS (z' z 2) = c 1 (Z " z 2 ) (14)

iInterleaf terminations on planes z = const. are not treated in
this work.
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in conjunction with (12) and (13) with q = 1. These relations

guarantee that the points on the hypothetical involute surface

corresponding to r = rS at z = z., z2 lie on the same meridian e

a s . A good first approximation for the solution of this system

of equations is given by

2 1 + PS (15)
4c 12/M2+ps rs 5

where

SrG (z 2) -rG (z)
PG =  z 2 - z 1  (16)

and the subscript G has the same meaning described earlier.

The constants c2 are governed by continuity of the hypothetical

involute surface at r rC , z = z, z2, which lead to

A2 A1
Fc2 (zi,z2 ) - Fcl(zlz 2) = (c 2Z 1 - z2 ) (17)

along with (12) and (13). We may use

c2 s llCl (18)

as a good first approximation for the solution of (17), (12), and

(13), although solutions do not exist for arbitrary values of the

input parameters. The involute surface strip is thus defined by
A

8q(Z) = + -cq (Z-z) + asl(zl)+ cot a5s(zl)-q (Z) - cot aq(Z)

+ [a c2 (zI) + cot a c2 (zl) - acl(zI) - cot acl(z1)] Sq2 (19)

which is continuous at z = zI, z2 . Here, 6 is the Kronecker
2- qp

delta; specifically, 622 = 1 and 612 = 0. The tilt and surface

angles, defined



A
tan y = q (20)

q coscq

and

Cos q)q = - sin aq sin yq (21)

like q, contain discontinuities at r = rC -

We next consider the distribution of helical angle , where

we restrict our attention to the case in which the warp (and fill)

fibers of the regions q = 1, 2 in the ply pattern are parallel.

Within each region of the hypothetical involute surface, the

helical angle is given by an equation of the form(6), however, a

discontinuity exists at r = rc . To define the magnitude of the

discontinuity, we consider a strip of infinitesimal height such

that z = z and z2= z + dz. In this strip, a crease1 occurs at

r =r. As one may observe by creasing a piece of lined paper,

Q the angles between the warp direction and crease line onq

either side of the crease line are equivalent. Letting (T, j, k)

represent unit vectors along the (0, r, z) directions, respectively,

at rC , the infinitesimal vector along the crease line is given by

Tk = -rd0l + dr5 + dzk (22)

But, differentiation of (19) leads to

A 2
dO = -a dz + cot2a da (23)cq Cq Cqq

which, on use of (12), becomes

CqdO = Aq dz - cos acqdr (24)

Now the unit vectors along the warp direction on either side of

are given by Wq where (see eqs. 8, 12, 13 of Reference [2])

1 In actual involute bodic , the crease appears to be smoothed out.
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q [Cos a lIsin q i + (sin YCqos Cq sin Cq

- sin Cq sin Cq Co s  Cq) I + Cos Ycq(Cos cqsin 'Cq (25)

-Cos Cq sin Cq) ]

Letting 0i = 2' or

d •w = d w2  (26)

where the dot signifies a scalar product, leads to the relation

f2 sin 0C2 + g2 cos =C2 
= f1 sin 0Cl + gl cos OCl (27)

where

fq 1 ~ s cota~ - sinaCecos 2 Y - cota
q sini q(cqCO )PcAq Cq

(28)

- cOSyCq cOS cq]

gq = Csycq + PC sinycq (29)

recalling that PC is given by (16). Thus, OC2 is defined by the

solution of (27), once 0CI has been established. The solution

of (27) is given by
C 2 ± cos-i Q1

= [2 cos (1- !l)] (30)

where the positive sign is chosen when *Cl > Wl, otherwise the

negative sign is used. In (30), we have made the replacements
f

tan w = - -  (31)q g 9

Qq (fq2 + gq2 (32)

and we have assumed that 0 < 0Cq - W q <1T.
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In the derivation of (30), we have assumed the strip has

infinitesimal height z2 - zI = dz. For the case of finite height,

we use the same relations as an approximation. Furthermore, we

choose to write (30) at each point rC(z) in order to develop

the general relation for 02 (z), although other interpretations

for this approximation are possible, such as writing (30) only

at rC(zI) and then utilizing an equation of the form (6) for q = 2

with base point (r0 , z ) replaced by (rc(Z 1 ), zl). The general

expressions for q thus become
q

A A
= '' +ip 1( 1) ,h~ 1 1zl(z) (- )( + (A1 [aI (Z-Zl) +

cotcil(Zl) - cot al(z)) (33)

A 2
02 (z) = Oc2 (Z) + c2(z) - 02 (z) + [cot azC2 ) -

(A2
2+1)

cot a2 (z)] which follow from (6).

b) PLY PATTERN OF A STRIP

We now turn our attention to the ply pattern, or developed

view, of a basic strip of th6 hypothetical involute surface. For

this purpose, we employ a set of equations of the form (7)-(9) to

represent each of the mapped regions q = 1,2. In other words,

consider two systems of plane cylindrical coordinates (R q, e ),

along with associated parameters X . If the involute constructionq

procedure were exact, we would position the origins and orient the

axes of the two coordinate systems such that the ply pattern would

be continuous along the crease line. But all solutions other than

an exact involute surface are approximate, hence this continuity

9



condition cannot be perfectly satisfied. Our approach to

approximate continuity consists of selecting the two R, 0

coordinate systems such that the ply pattern is continuous at the

mapped point corresponding to rC(z1 ) while the distance between

the two mapped images of rC(z 2 ) is minimized. In this manner,

three parameters, corresponding to relative translation and

rotation of the two coordinate systems, can be evaluated. We

shall subsequently employ a similar algorithm to treat strip-to-

strip continuity of the ply pattern. Thus, we shall use subscripts

a, b in lieu of 1, 2 in order to avoid specific dependence on the

region index q in what follows.

The two plane cylindrical coordinate systems, (R , 0 ) anda a
(R b, e), are shown in Figure 4(a), as well as a cartesian

system (x,y). For our purposes, we shall regard (x,y) as being

fixed in space, while the former two vary in orientation and

position according to the strip and region under consideration.

From Figure 4(a), we observe that

x = x + R cos (E - R
a  a a a b bo

(34)

y= y + Ra sin ( 0 - 0  yb + Rb sin (b- )

for a point P in the ply pattern which has coincident images

in the (Ra 0- ) and (Rb, %) coordinate systems. If the corresponding

images of a mapped point do not coincide, they are separated by

a distance L which is given by

2 * ** * - 2

L 2 nia+Rbcos (*b )- Ra cos (8 a *- G)] + [yb-YaL2  si (b-( +a)1o2(b

sin (E - ) - a* sin (a - a)]35)

10
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where we let Ra  0 a and Rb , E represent the mapped coordinates

of a point with distinct images. Minimizing the distance L by

the operation

L 0 (36)

after using (34) to eliminate xb - Xa and 'b -a' we get

BI
tan -

0a )  (37)

where

B = RR sin( a - O) + Ra Rbsin(Oa - X) + RRb sin(%- 0)

+ Ra Rb sin(% -O a

(38)

B2 =- RRb cos(Oa - - Rb  a - G) + RRb cos(Qb- Q
** cos( - a

+ Ra Rb

It should be noted that eq. (37) always has two roots. The correct

root is the one which minimizes L in eq. (35).

Thus, to satisfy the aforementioned continuity conditions for

adjoining regions q = 1,2, we simply let a = 1, b = 2 (or vice

versa) and make the replacements

R R (z 0 0 z(9q RCq(l) ,  q f  Gc(Z ) (39)
q* *

R =R (Z), Zq Cq 2 2

in (38), which in turn is substituted into (37) and thence into

(34), so that the coordinates of the ply pattern strip become

ii



xx +Rc (0SE)-0E)
(40)

y =y + R sin (0- 0)
q q

according as the image point (R, 0) corresponds to q = 1 or q = 2.

In (40), we let (R, 0 ) represent the ply pattern parameters of

an arbitrary point, which may lie in either region.

c) SPECIAL CASE: CYLINDRICAL INVOLUTE STRIP

In the usual case, R and 0 are given by eqs. (7) - (9). An

exceptional case occurs however, when the hypothetical involute

surface strip is cylindrical, i.e., y = A = 0. In this case,

eq. (9) is not valid and the ply pattern degenerates into a

trapezoid in which the mapped edges corresponding to the planes

z = constant are parallel. Furthermore, the length of each of

these mapped edges is equal to its arc length in the involute

surface. Thus, referring to Figure 4(b), we redefine the quantities

R and 0 for this special case by

22 [r2 (z)-rG2 (z)] 2

R CYL(z) = (z-z ) + 2 (41)CYL 4c
q1 Z-Zll

sin 9 zYL(z) - R (42)
( YLz) CYL Z

where G may be set equal to S if q = 1 and C if q = 2 for

convenience. In this way, the origin of R, 0 coordinates in Figure

4(!3) is placed at the image of rs(z1 ) if q = 1 and rC(z1) if q = 2.

With the interpretation of (41) and (42) for any cylindrical

involute region, the previous (and subsequent) ply pattern equations

are all valid.

12



d) CONNECTIVITY OF STRIPS

The preceeding equations (10) - (21) define the hypothetical

involute surface, or spatial configuration of a ply within the

generated body of revolution conceived in the start-line method.

As mentioned earlier, the strips are only connected along the

start-line itself. Internal continuity conditions between regions

q = 1,2 have already been established. Thus, for piecewise-

continuous functions rG(z), these equations represent a complete

system. It is only necessary to recall that, for consecutive

strips, the previous value of z2 becomes the new value of z1 (for

the next strip).

In order to define the helical angle distribution via eqs.

(33), an additional constraint is required, for example

(i) (i+l)
0s = 2 s1 (zl) (43)

where we have introduced a strip index as a superscript since

the relation involves consecutive strips. However, because of

the inherent approximation of the start-line method, (43) must be

viewed as an assumption. It may be just as accurate to assume

that sl(z) is a constant. For typical exit cones in which a is

quite small, the difference between these two assumptions would

be negligible.

Unlike the hypothetical involute surface, however, the ply

pattern equations (34)- (42) do require explicit connectivity

relations to define strip-to-strip continuity. Here, the above

algorithm involving eqs. (38), (37), and (34) is repeated, however,

in place of (39) we use

13
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(i) (i)

Ra = Rs(z 2 ), 0a = Os(Z 2 )

(i+l) (i+l)
R RbCZ), b %= Os(z 1 )

, (i) * (i)
M MRa = RG(z a EG(Z 2 ) (44)

, (i+l) * (i+l)
Rb = RG(zl), % (zl)

where G + S may be chosen arbitrarily. Convenient choices are

G = C or G = I or 0, corresponding to the farthest point from

the start-line. The ply pattern coordinates are thus given by

x = Xq x+ R cos (E- 0
q q

(45)
Wi (i) Wi WiM(i

ysy=q + R sin (0 - 0)
y y q q

(i) (M)
in a common coordinate system (x,y). The values of Xq, yq, and
(i)
g for single fixed values of i and q may be chosen arbitrarily.
q

The framework provided by eqs. (10) - (45) now constitutes a

complete system of recursion relations such that zI of the sub-

sequent strip corresponds to z of the present strip. Input data

for this model requires prescription of the z - dependent radii,

r I , rO , rc, and rs (usually given in digital fashion), M q(q = 1,2),

the start-line meridian eS' and the helical angle 0 at a single

point on the start-line. In the event that no interleaving is

present, one may simply neglect equations related to the region q

= 2 or set M2 = M1 in the general equations. The start-line

procedure always yields discontinuities in the ply pattern and the

14



involute surface unless an exact involute surface is employed.

In the latter case, the start-line is no longer arbitrary and it

is only necessary to use eqs. (1) - (9). If the exact involute

surface is also cylindrical, then eqs. (41) and (42) can be used

in place of (7) - (9).

15
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EXPLICIT RELATIONS FOR THE START-LINE METHOD

In this section, we shall demonstrate that the equations

defining involute parameters cq, i.e., eqs. (12) - (14) and (17),

can be solved in explicit (rather than iterative) fashion provided

that we model the involute surface by strips of infinitesimal

dimension z 2 - z V

Letting zI = z and z = z + dz, we observe that (14) may be

expressed as
A1

Fs(z, z + dz) + - dz = 0 (46)

while (11) gives

Psi(z, z + dz) = cot2 asldsl (47)

where aSl is the arc angle at rS(z). Now substituting (47) into

(46) after use of (12) and its derivative leads to

(rS2-c2 )
1 2 drS  (48)

AldZ =rs(8
1r

whence, substituting (13) into (48) and solving for cI , we get

2 1 +m S 2

c 2 2 2 2(49)
4 2 m, + ms /rs

where
drG

m G = -d (50)

We also see that mG is equivalent to tan yG by (4), however, the

form (50) can be expressed in terms of given information, thus is

more convenient for use in (49). Equation (49), which has been

given earlier as a good first approximation for finite strip height

z2-z shows that c in a practical exit cone built by the start-

16



line method never differs greatly from its value for cylindrical
M1

involutes (-).

In similar fashion, we may derive an explicit expression for

c 2 . In this case, (17) becomes
A1 A2

Fc2 (zz+dz) - FcI(zz+dz) ( - -)dz (51)

Using (11) and (12) along with its derivative again, we find that

(rC2_C1 2 (r c2 2)- mc A1 1 222
c c 2  r C  cI cc2 2 ( M2 (52)r~c 2  M2

2  1)52)

Solving for c2, we get
al~a2

c 2  a-- -- 2153)

where

2 2 2 2 2 2 2
a1 = (l+mc )(41T /M2 +mc /rc ) + (mc -1)a4

a2 = 2mca 4 2(+mc )(4T 2/M 2 -1/r 2 ) - a42]k (54)

2 2 2 2 22 2 2 2

a 3 = (412/M 2 2-mc 2/r 2-a4 )2  + 161T 2mC2 /M2 2 rc
2

= i [ (4 2 c 2 /M 2 
- j) - (rC 2 -cl 2 ) mc/r C ]

The sign ambiguity in (53) is caused by an extraneous root

resulting from the solution procedure. The correct root is the

one that satisfies eq. (52). In order for a solution of (52) to

exist, the input parameters must satisfy the relation
a2

M2  27 1 + 4 2 )
rc C l+mc

17
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which simply requires a2 to be real. Also, if the region q = 1

is a cylindrical involute while q = 2 is not, the data must be

such that c1 > c 2.

Although the equations governing the ply pattern may be

solved explicitly as above, the results are very cumbersome and

inconvenient, thus they will not be derived here.

18



DISCONTINUITY STRAINS

An involute surface is conceived to be built of strips in

the start-line approach. This hypothetical involute surface, in

general, contains discontinuities in the form of "plateaus" at

interfaces z = constant. Since the procedure is approximate it

is important to quantify the error in order to compare ply patterns

and to define regions in which ply pattern deformations tend to

become excessive. Our proposed method of evaluation of ply pattern

accuracy depends on the introduction of "discontinuity strains,"

which are defined as the components of an applied strain field that

would transform the hypothetical involute surface into a continuous

sheet.

We again consider a hypothetical involute surface generated

by infinitesimal strips and its traces in the planes z, z + dz =

constant. However, at z + dz, two traces are considered on the

plateau. These correspond to involute constants c and c + dc

and are distinct except on the start-line, where the two traces

intersect. In this way, we establish an algorithm suggested by

Figure 5, where the six points 1-6 are introduced. Corresponding

numerical values are used as subscripts to define coordinates.

Points 1, 2, 3, and 4 all lie on a continuous surface with

involute constant c, while 5 and 6 are on a surface defined by

involute constant c + dc. The discontinuity strains are the

(hypothetical) strains introduced in the transformation removing

the discontinuity, i.e., moving 3 to 5 and 4 to 6.

In general, the discontinuity strains will not represent the

actual strain field in the fabricated body since their presence
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would depend upon specific (artificial) constraints. However, we

may state that a continuous involute surface would result from their

application. The discontinuity strains are a direct measure of

the errors involved in the use of the start-line method, and they

may be useful in delineating potential areas of wrinkling and

severe fabric distorsion. Thus, the discontinuity strains C..

should be considered as a guide to good ply pattern design, rather

than as a precise measure of material deformation.

Recalling eq. (19), we can observe that

d8 = cot 2cdc (56)

and
dz cot 2 ad (57)dz = - C Qd

A

where the region index q is dropped since it is immaterial for

the present analysis. Thus from (56), (57), and (12), we arrive

at

cdOr2 = 1  C cosa 1

Adz

r r + Adz (58)

cd0 Adz

4  1 cosa Cos1

where 01 = 3 = 0 and 02 = 04 = 0 + d.

It is now necessary to define the location of points 5 and 6

such that we maintain a one-to-one correspondence between them-

selves and their associated points 3 and 4. To accomplish this,

we observe that, despite the appearance of two traces at z+dz,

the radii at the end points of the two traces (r0 and rI ) are

identical since rG are functions of z only. Thus, the ratio of

arc lengths along the two traces is inversely proportional to the

ratio of their involute constants. This relationship can be

preserved by taking
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r 5 = r 3

(59)
r6  r4

Thus, the transition between the traces at z+dz involves a change

in a, but not r. Using (12) then, we get

da tan(6c (60)dc c

at z+dz, while at the same level, we have

d(e+cota) _ dc cot = dc (r2_c2) (61)
dc c 2c

Substituting these relations into (19) leads to

05 = 0 + d8 (62)

where

dc 2c1o1 (rF2-C ) 2 ] (63)
C.

and rF is the radius at the point where the traces at z+dz intersect,

which is rS if q = 1 and r if q =2. We also get

0 6 = 05 + dO (64)

from (60), (61), and (19).

To define the discontinuity strains, we begin by computing

the vectors s2' s3 ' and s5 that are directed from point 1 to the

respective points as shown in Figure 5. In terms of a unit triad

(i, j, k) directed from the origin toward point 1, we have

= (r1i c1s1 j)dOcosa 1

93 = Cosa-1 
j + k)dz (65)

^ Adz

S5 = rlc3i + F-- j + dzk5 1 osat
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where we have dropped higher order terms and c is given by (63).

Thus, the strain in the meridional direction (see Figure 6) is

given by

E =- 1 (66)
m s 3

which, on use of (65) and the assumption that cm << 1, yields

Cc 8'cote I)
2

Cm = 2 2 (67)
2(A 2+cos2 a

where the prime denotes differentiation with respect to z. We

note that a ' can be expressed as

=' -[c cote I - (r c 2 (68)
c

with c' given by differentiation of (49) or (53), according as

q = 1 or 2, respectively.

We now consider the strain in the s-direction, where s

corresponds to the tangent vector in a plane normal to the z-axis.

The appropriate deformation involves a transformation that

carries the arc connecting points 3 and 4 into that connecting 5

and 6. The ratio of these two arcs, however, is the inverse of

the ratio of their respective involute constants, which are c and

c+dc. Hence, only infinitesimal strain accompanies this trans-

formation and

E = 0 (69)

For our third deformation measure, we shall compute the

distortion of surface angle p. Letting 0 represent the angle

between s2 and s 5 we get

cos 2 = 2"s5 (70)
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which, on substitution of (65), becomes

(c B' cot 2 al-A)sina (71)
COSQ (C 8' cotl) 2+A 2 2 OS ]

Using elementary trigonemetric relations in conjunction with (5)

brings us to

I(A2 +1) (cSU cot 2 a 1 -A)+A[(A+6' )2+11 inacICosa 1  (72)
sin0 W -e = ___ 2

(A2+cos 2U1) [ B'cota1) +A
2 +cos 2a]

The quantities given by eqs. (67), (69), and (72) may be

viewed as deformation measures in a non-orthogonal coordinate

system since the angle between s and m is q, rather than Tr/2.

These quantities may be transformed into discontinuity strains in

the orthogonal system (s,t) shown in Figure 6 via the relat.,c.s

2 + .
Em = Etsin 2 1+Ystsin icos 1  (73)

-t sin 1 cos l1-ystsin 2 1

since the material on the s-axis does not deform or rotate (we

have assumed that points 1 and 2 are fixed in space). Inverting

(73) and repeating (69), we arrive at

Cs = 0

Et= Em + (- 1 )cot 1  (74)

Yst oi Ql- +E m C tipl

The terms involving cot* l tend to be small in practical exit cones

since * is only slightly larger than n/2. The strains (74) may

now be traniformed into arbitrary coordinate systems, such as the

warp/fill axes, by use of the standard strain transformation

equations of linear elasticity.
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DEBULKING KINEMATICS

In this section we shall derive explicitly the equations

referred to in (1] pertaining to the analysis of debulking

kinematics. Specifically, we shall consider the configuration

of the involute surface corresponding to material in its initial,

undebulked form assuming that the ply pattern based upon cured

thickness is given, starting with the premise that it is desirable

to pressurize against tooling that controls the profile of either

final surface, i.e., r I(z) or r (z), during debulk. The treatment

is valid specifically for exact involute construction. Therefore,

if involute construction based upon the start-line method is employed,

the model given here applies strictly to a strip of the hypo-

thetical involute surface.

As discussed in [1], it is not possible to design a ply

pattern for an arbitrary body of revolution such that one of its

edges will remain in contact with a control surface throughout

a debulking procedure. However, approach was shown that permits

an edge of the ply pattern to lie quite close to the control

surface during debulking over a significant region provided that

the ply pattern contains no discontinuities in the region. In

this approach, the two end points of the ply pattern boundary in

the (smooth) region, which are termed reference points, lie on the

control surface. The formulation proceeds as follows:

Determine the ply pattern corresponding to the final (cured)

state in the usual manner. We let the initial (undebulked) position
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of point 1 coincide with its final location, while point 2 is

merely constrained to lie on the control surface. The coordinates

and other parameters evaluated at points 1 and 2 shall be denoted by
1

the respective subscripts. The usual notation is employed for

the cured configuration, while the same symbols with asteriks

will be used to refer to undebulked configuration. For the first
* * *

approximation, let the initial coordinates (r2 , 02 , 2

coincide with their final values. Using (19) then, we arrive at

* A* (7

2 1 cT (z2* -zl) + 1x + c t2tl*c 2* (75)

for a first approximation of c*. Equation (75) can be solved by

iteration starting with an assumed value

-t*C (76)t

Now let the control surface be defined by

r2 r = f (z2 *-z ) (77)

where f is a known function. Also let k represent the distance

between the images of points 1 and 2 in the ply pattern, orI.2 RI2+R 22RIR2O
1 2 (0 2-) (78)

We then solve for r2* and z * by iteration using
2 2

(z2*-Zl 2A
2 1  - 2 - cot X + Xi + cot X (79)

c*[(A*)2 +1] 2*

and
(Rl,)2 + (R2*) 2 _ 2R *R 2*cos, = £2 (80)

1 Similar to the previous section, numerical subscripts are only
used in this section to denote the reference points 1 and 2
since the region index q is not needed. This assumes that
points 1 and 2 are in the same region. Also, quantities with
asteriks in this section represent the undebulked configuration
and should not be confused with the previous meaning of the
asteriks.
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and (77). A good first approximation is z = z2 . The constant

c* can be adjusted for a closer fit between the initial p1Y boundary

and the control surface. In this case, a revised solution of (77),

(79), and (80) must be executed, while 82* is given by (75).

At this time, we have the coordinates of each reference point.

We also have the mapped image of each reference point in two

coordinate systems. Thus, the next step is to establish the

relationship between the two coordinate systems such that the

two images of each reference point will coincide. Referring to

Figure 7, this is accomplished by use of- ST*-TS*

tan 0 = S*T* (81)

where

S = R2 cos cos 1

(82)
T = R2 sin 02 - R1 sin 01

as well as

x = R1 cos 01 - R1 * cos (01* - 0) = R2 cos 02-R 2 *0os(O2*-)(83)

and

y = R sinO -R *sin( 1*-0)= R 2sin2-R 2*sin(0 2*-0) (84)

Given an arbitrary image (R, 0) in the final (cured) state, there-

fore, we can define its counterpart (R*, 0*) in the undebulked

state via

R*= (Rcos 0- )2 + (Rsin 0- Y)2] (85)

and
tan (0* - 0) . Ro-- (86)

e) Rcos)-R

Finally, we arrive at the undebulked coordinates (r*, 0*, z*) from

the relations
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2(A'R*) 2 _ 2 C2

* 2 A*(87)

c*[(A*)2+I+1

z* Z + C*2(A*) + (0"*O~j + A* + cot A* - cotA1 *) (88)
(A*)

1*+A*
0* = 1 + (z*-zl) + a + cotl* - a* - cota* (89)

which are derived from (8), (9), and (2). By use of the present model,

one can approximate quite accurately the condition that a ply

boundary remains in contact with a fabrication tooling surface,

provided the ply boundary contains no discontinuity in the region.

The above treatment defines the debulking kinematics of an

exact involute body. For a body constructed by the start-line

method, eqs. (75) - (89) are only valid within a strip of the hypo-

thetical involute surface. Because of the inherent discontinuities

in the hypothetical involute surface, however, the form of the most

accurate approximate scheme to treat the debulking kinematics for a

body generated by the start-line method is not evident. Therefore,

these problems should probably be examined via a case by case

analysis.
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CONCLUDING REMARKS

Construction of bodies such as rocket nozzle exit cones by

the involute method involves analytical modeling of various aspects

of the fabrication procedure. Furthermore, the fabrication approach

may involve the use of an exact involute ply pattern or one generated

by the (inexact) start-line method, which may include interleaving.

Since the start-line model contains inherent discontinuities, it

is important to evaluate the effect of the approximation on ply

pattern distortion and deformation. Finally, proper debulking

requires carefully designed tooling and a model describing the

*kinematics of the debulk process. Aside from the manufacturing

considerations, the stress analyst needs a model to characterize

the variation of the important involute parameters, such as arc

and helical angles, throughout the body, as these parameters

define the distribution of the elastic stiffness tensor, which in

turn influence the stress field. All these topics have been

treated here including the development of explicit relations where

practical. Although some of these equations appear elsewhere,

such as [1] - (4], they have also been included here for completeness

and convenience of the reader.
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Figure 1. involute Surface Coordinate System.
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Figure 2. Involute Surface Geometry.
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Figure 3. Ply Pattern Coordinates.
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Figure 6. Coordinate Axes for Discontinuity Strains.
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APPENDIX A

A NOTE ON SIGN CONVENTIONS

Since many parameters are involved in the definition of the

exact involute surface, it is not surprising that various sign con-

ventions appear in the literature. In other cases, inconsistencies

in sign are present, e.g., eq. (B-3) of [1] and eq. (3) of [2].

These have been corrected in the corresponding equations of the

present work. Since the use of these relations to define stiff-

ness, stress, and displacement components in stress field models

requires rigid adherence to a consistent sign convention, we shall

review the present nomenclature in explicit fashion at this point.

All equations derived in this work are consistent with the

following convention:

a) Unit vectors I,3, lie in the directions of (increasing) e,r,z,

respectively. The unit vectors i,j,k, in that order, form a right-

hand triad. Furthermore, the involute surface is assumed to be

oriented such that the slope of the meridian, dr is not negative.

b) Unit vectors t,s,n must be oriented such that they are defined

by

t = j sin y + cos y

s = cos a - 3 sin a

n sin = tx^

and the ranges of the various angles are given by

0 a w/2 ,0 s y w/2 ,w/2 w (A-2)
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In this way, n is the unit outward normal vector of the involute

surface.

c) The helical angle 0 may be chosen to represent the orientation

of any particular line segment on the ply pattern. For definite-

ness, let us assume 0 is measured to the warp direction. Then a

positive angle 4 is measured from the meridian toward the warp

direction such that the vector representing 4 by the right-hand

rule lies in the direction of n.
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